Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3742, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353488

RESUMEN

Systems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights. As proof-of-principle, we derive systems-level insight into PPI dysfunctions of cancer cells which enabled the discovery of a context-dependent mechanism by which cancer cells enhance the fitness of mitotic protein networks. Importantly, our systems levels analyses support the use of epichaperome chemical binders as therapeutic strategies aimed at normalizing PPI networks.


Asunto(s)
Neoplasias , Mapas de Interacción de Proteínas , Humanos , Proteoma/metabolismo , Mapeo de Interacción de Proteínas , Neoplasias/genética , Aclimatación
2.
Nature ; 580(7801): 106-112, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238932

RESUMEN

Radial glial progenitor cells (RGPs) are the major neural progenitor cells that generate neurons and glia in the developing mammalian cerebral cortex1-4. In RGPs, the centrosome is positioned away from the nucleus at the apical surface of the ventricular zone of the cerebral cortex5-8. However, the molecular basis and precise function of this distinctive subcellular organization of the centrosome are largely unknown. Here we show in mice that anchoring of the centrosome to the apical membrane controls the mechanical properties of cortical RGPs, and consequently their mitotic behaviour and the size and formation of the cortex. The mother centriole in RGPs develops distal appendages that anchor it to the apical membrane. Selective removal of centrosomal protein 83 (CEP83) eliminates these distal appendages and disrupts the anchorage of the centrosome to the apical membrane, resulting in the disorganization of microtubules and stretching and stiffening of the apical membrane. The elimination of CEP83 also activates the mechanically sensitive yes-associated protein (YAP) and promotes the excessive proliferation of RGPs, together with a subsequent overproduction of intermediate progenitor cells, which leads to the formation of an enlarged cortex with abnormal folding. Simultaneous elimination of YAP suppresses the cortical enlargement and folding that is induced by the removal of CEP83. Together, these results indicate a previously unknown role of the centrosome in regulating the mechanical features of neural progenitor cells and the size and configuration of the mammalian cerebral cortex.


Asunto(s)
Centrosoma/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/embriología , Células Ependimogliales/citología , Células-Madre Neurales/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patología , Proliferación Celular , Centriolos/metabolismo , Corteza Cerebral/patología , Femenino , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/patología , Neurogénesis , Proteínas Señalizadoras YAP
3.
Elife ; 92020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32242819

RESUMEN

Subdistal appendages (sDAPs) are centriolar elements that are observed proximal to the distal appendages (DAPs) in vertebrates. Despite the obvious presence of sDAPs, structural and functional understanding of them remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring, respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework for sDAPs that sheds light on functional understanding, surprisingly revealing coupling between DAPs and sDAPs.


Asunto(s)
Centriolos/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Ciclo Celular , Proteínas de Ciclo Celular/química , Células Cultivadas , Proteínas del Citoesqueleto/química , Proteínas de Choque Térmico/química , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Nucleares/química
4.
Mol Biol Cell ; 29(23): 2801-2808, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30230954

RESUMEN

Centriole-to-centrosome conversion (CCC) safeguards centriole homeostasis by coupling centriole duplication with segregation, and is essential for stabilization of mature vertebrate centrioles naturally devoid of the geometric scaffold or the cartwheel. Here we identified PPP1R35, a putative regulator of the protein phosphatase PP1, as a novel centriolar protein required for CCC. We found that PPP1R35 is enriched at newborn daughter centrioles in S or G2 phase. In the absence of PPP1R35, centriole assembly initiates normally in S phase, but none of the nascent centrioles can form active centrosomes or recruit CEP295, an essential factor for CCC. Instead, all PPP1R35-null centrioles, although stable during their birth in interphase, become disintegrated after mitosis upon cartwheel removal. Surprisingly, we found that neither the centriolar localization nor the function of PPP1R35 in CCC requires the putative PP1-interacting motif. PPP1R35 is thus acting upstream of CEP295 to induce CCC for proper centriole maintenance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Ciclo Celular/fisiología , Línea Celular , Centrosoma/metabolismo , Fase G2 , Homeostasis , Humanos , Proteínas Asociadas a Microtúbulos , Mitosis/fisiología , Proteína Fosfatasa 1/metabolismo , Puntos de Control de la Fase S del Ciclo Celular
5.
Nat Commun ; 9(1): 2023, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789620

RESUMEN

Distal appendages (DAPs) are nanoscale, pinwheel-like structures protruding from the distal end of the centriole that mediate membrane docking during ciliogenesis, marking the cilia base around the ciliary gate. Here we determine a super-resolved multiplex of 16 centriole-distal-end components. Surprisingly, rather than pinwheels, intact DAPs exhibit a cone-shaped architecture with components filling the space between each pinwheel blade, a new structural element we term the distal appendage matrix (DAM). Specifically, CEP83, CEP89, SCLT1, and CEP164 form the backbone of pinwheel blades, with CEP83 confined at the root and CEP164 extending to the tip near the membrane-docking site. By contrast, FBF1 marks the distal end of the DAM near the ciliary membrane. Strikingly, unlike CEP164, which is essential for ciliogenesis, FBF1 is required for ciliary gating of transmembrane proteins, revealing DAPs as an essential component of the ciliary gate. Our findings redefine both the structure and function of DAPs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Ciclo Celular/ultraestructura , Centriolos/ultraestructura , Cilios/ultraestructura , Proteínas de Microtúbulos/ultraestructura , Proteínas Asociadas a Microtúbulos/ultraestructura , Canales de Sodio/ultraestructura , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Centriolos/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Edición Génica , Expresión Génica , Células HEK293 , Humanos , Proteínas de Microtúbulos/genética , Proteínas de Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Imagen Molecular , Multimerización de Proteína , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/ultraestructura , Canales de Sodio/genética , Canales de Sodio/metabolismo
6.
Dev Cell ; 43(6): 653-655, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29257946

RESUMEN

Cilia have evolved to function as essential sensory organelles in animals. To understand why cilia are intimately associated with cell signaling, Sigg et al. (2017) develop and apply a comparative proteomics approach, reported in this issue of Developmental Cell, to analyze the evolutionary relationship between cilia and various signaling pathways.


Asunto(s)
Cilios , Proteómica , Animales , Orgánulos , Proteoma , Transducción de Señal
7.
Dev Cell ; 39(4): 424-437, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27818179

RESUMEN

Vertebrate cells can initiate ciliogenesis from centrioles at the cell center, near the Golgi, forming primary cilia confined or submerged in a deep narrow pit created by membrane invagination. How or why cells maintain submerged cilia is unclear. Here, by characterizing centriole subdistal appendages (sDAP) in cells exclusively growing submerged cilia, we found that a group of sDAP components localize to the centriole proximal end through the cohesion factor C-Nap1 and that sDAP function redundantly with C-Nap1 for submerged cilia maintenance. Loss of sDAP and C-Nap1 has no effect on cilia assembly, but it disrupts stable Golgi-cilia association and allows normally submerged cilia to fully surface, losing the deep membrane invagination. Intriguingly, unlike submerged cilia (stationary), surfaced cilia actively respond to mechanical stimuli with motions and can ectopically recruit Hedgehog signaling components in the absence of agonist. We propose that spatial control of ciliogenesis uncouples or specifies sensory properties of cilia.


Asunto(s)
Cilios/metabolismo , Morfogénesis , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Centriolos/metabolismo , Centriolos/ultraestructura , Centrosoma/metabolismo , Centrosoma/ultraestructura , Cilios/ultraestructura , Técnicas de Inactivación de Genes , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Proteínas Hedgehog/metabolismo , Humanos , Centro Organizador de los Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Movimiento (Física) , Mutación/genética , Reología , Sensación , Transducción de Señal
8.
Cell Rep ; 16(5): 1195-1203, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27425613

RESUMEN

PLK4 is the major kinase driving centriole duplication. Duplication occurs only once per cell cycle, forming one new (or daughter) centriole that is tightly engaged to the preexisting (or mother) centriole. Centriole engagement is known to block the reduplication of mother centrioles, but the molecular identity responsible for the block remains unclear. Here, we show that the centriolar cartwheel, the geometric scaffold for centriole assembly, forms the identity of daughter centrioles essential for the block, ceasing further duplication of the mother centriole to which it is engaged. To ensure a steady block, we found that the cartwheel requires constant maintenance by PLK4 through phosphorylation of the same substrate that drives centriole assembly, revealing a parsimonious control in which "assembly" and "block for new assembly" are linked through the same catalytic reaction to achieve homeostasis. Our results support a recently deduced model that the cartwheel-bound PLK4 directly suppresses centriole reduplication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centriolos/fisiología , Homeostasis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Ciclo Celular/fisiología , Humanos , Fosforilación/fisiología
9.
Elife ; 52016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27371829

RESUMEN

Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency.


Asunto(s)
Puntos de Control del Ciclo Celular , Centrosoma/metabolismo , Mitosis , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Marcación de Gen , Pruebas Genéticas , Humanos
10.
Methods Mol Biol ; 1413: 197-206, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27193851

RESUMEN

Centriole or centrosome number in cycling cells is strictly maintained through coordinated duplication and segregation. Duplication is limited to once only per cell cycle by separating the assembly event that occurs in S/G2 phase from the two licensing events, centriole disengagement and centriole-to-centrosome conversion, both of which occurs in mitosis. In addition to duplication licensing, centriole-to-centrosome conversion also enables centrioles to associate with spindle poles and thereby to segregate equally during cell division. Centriole disengagement and centriole-to-centrosome conversion thus constitute the major regulatory module ensuring centrosome homeostasis in cycling cells. Using Xenopus egg extracts and purified engaged centrioles, we here describe an in vitro assay allowing us to synchronously induce the initiation of centriole disengagement and centrosome formation, pause the reaction anytime during the process, and more importantly, preserve "reaction intermediates" for further analyses.


Asunto(s)
Sistema Libre de Células , Centriolos/metabolismo , Centrosoma/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Expresión Génica , Genes Reporteros , Humanos , Centro Organizador de los Microtúbulos/metabolismo , Mitosis , Oocitos/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Xenopus
11.
Elife ; 42015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26609813

RESUMEN

Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Biogénesis de Organelos , Multimerización de Proteína , Línea Celular , Células Epiteliales/fisiología , Humanos
12.
Sci Rep ; 5: 14096, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26365165

RESUMEN

The transition zone (TZ) of primary cilia serves as a diffusion barrier to regulate ciliogenesis and receptor localization for key signaling events such as sonic hedgehog signaling. Its gating mechanism is poorly understood due to the tiny volume accommodating a large number of ciliopathy-associated molecules. Here we performed stimulated emission depletion (STED) imaging of collective samples and recreated superresolved relative localizations of eight representative species of ciliary proteins using position averages and overlapped with representative electron microscopy (EM) images, defining an architectural foundation at the ciliary base. Upon this framework, transmembrane proteins TMEM67 and TCTN2 were accumulated at the same axial level as MKS1 and RPGRIP1L, suggesting that their regulation roles for tissue-specific ciliogenesis occur at a specific level of the TZ. CEP290 is surprisingly localized at a different axial level bridging the basal body (BB) and other TZ proteins. Upon this molecular architecture, two reservoirs of intraflagellar transport (IFT) particles, correlating with phases of ciliary growth, are present: one colocalized with the transition fibers (TFs) while the other situated beyond the distal edge of the TZ. Together, our results reveal an unprecedented structural framework of the TZ, facilitating our understanding in molecular screening and assembly at the ciliary base.


Asunto(s)
Cilios/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Cilios/química , Cilios/ultraestructura , Proteínas del Citoesqueleto , Genes Reporteros , Humanos , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Microscopía Electrónica , Proteínas de Neoplasias/metabolismo , Proteínas/metabolismo
13.
Curr Biol ; 24(21): R1046-8, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25517369

RESUMEN

Polo-like kinase 4 is known to drive centriole duplication, but the relevant substrate remains elusive. A new study shows that PLK4 phosphorylates a key centriolar component, Ana2/STIL, to initiate centriole assembly.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales
14.
Cell Rep ; 8(4): 957-65, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25131205

RESUMEN

Vertebrate centrioles lose their geometric scaffold, the cartwheel, during mitosis, concurrently with gaining the ability to recruit the pericentriolar material (PCM) and thereby function as the centrosome. Cartwheel removal has recently been implicated in centriole duplication, but whether "cartwheel-less" centrioles are intrinsically stable or must be maintained through other modifications remains unclear. Here, we identify a newborn centriole-enriched protein, KIAA1731/CEP295, specifically mediating centriole-to-centrosome conversion but dispensable for cartwheel removal. In the absence of CEP295, centrioles form in the S/G2 phase and lose their associated cartwheel in mitosis but cannot be converted to centrosomes, uncoupling the two events. Strikingly, centrioles devoid of both the PCM and the cartwheel progressively lose centriolar components, whereas centrioles associating with either the cartwheel or PCM alone can exist stably. Thus, cartwheel removal can have grave repercussions to centriole stability, and centriole-to-centrosome conversion mediated by CEP295 must occur in parallel to maintain cartwheel-less centrioles for duplication.


Asunto(s)
Centriolos/fisiología , Centrosoma/metabolismo , Proteínas/fisiología , Proteínas de Ciclo Celular , Línea Celular , Humanos , Proteínas Asociadas a Microtúbulos
15.
Dev Cell ; 30(2): 238-45, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25017693

RESUMEN

Centrioles are 9-fold symmetric structures duplicating once per cell cycle. Duplication involves self-oligomerization of the centriolar protein SAS-6, but how the 9-fold symmetry is invariantly established remains unclear. Here, we found that SAS-6 assembly can be shaped by preexisting (or mother) centrioles. During S phase, SAS-6 molecules are first recruited to the proximal lumen of the mother centriole, adopting a cartwheel-like organization through interactions with the luminal wall, rather than via their self-oligomerization activity. The removal or release of luminal SAS-6 requires Plk4 and the cartwheel protein STIL. Abolishing either the recruitment or the removal of luminal SAS-6 hinders SAS-6 (or centriole) assembly at the outside wall of mother centrioles. After duplication, the lumen of engaged mother centrioles becomes inaccessible to SAS-6, correlating with a block for reduplication. These results lead to a proposed model that centrioles may duplicate via a template-based process to preserve their geometry and copy number.


Asunto(s)
Centriolos/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Humanos , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína
16.
Nat Cell Biol ; 15(6): 591-601, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23644468

RESUMEN

The transition zone is a specialized compartment found at the base of cilia, adjacent to the centriole distal end, where axonemal microtubules are heavily crosslinked to the surrounding membrane to form a barrier that gates the ciliary compartment. A number of ciliopathy molecules have been found to associate with the transition zone, but factors that directly recognize axonemal microtubules to specify transition zone assembly at the cilia base remain unclear. Here, through quantitative centrosome proteomics, we identify an axoneme-associated protein, CEP162 (KIAA1009), tethered specifically at centriole distal ends to promote transition zone assembly. CEP162 interacts with core transition zone components, and mediates their association with microtubules. Loss of CEP162 arrests ciliogenesis at the stage of transition zone assembly. Abolishing its centriolar tethering, however, allows CEP162 to stay on the growing end of the axoneme and ectopically assemble transition zone components at cilia tips. This generates extra-long cilia with strikingly swollen tips that actively release ciliary contents into the extracellular environment. CEP162 is thus an axoneme-recognition protein pre-tethered at centriole distal ends before ciliogenesis to promote and restrict transition zone formation specifically at the cilia base.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Antígenos de Neoplasias/metabolismo , Axonema/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Proteínas de Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Células 3T3 , Adenosina Trifosfatasas/genética , Animales , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular , Línea Celular , Centrosoma/metabolismo , Proteínas del Citoesqueleto , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Proteómica , Interferencia de ARN , ARN Interferente Pequeño
17.
Genes Dev ; 27(2): 163-8, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23348840

RESUMEN

The distal appendages (DAPs) of centrioles have been proposed to anchor cilia to the plasma membrane, but their molecular composition, assembly, and exact function in ciliogenesis remain poorly understood. Using quantitative centrosome proteomics and superresolution microscopy, we identified five DAP components, including one previously described (CEP164), one partially characterized (CEP89 [ccdc123]), and three novel (CEP83 [ccdc41], SCLT1, and FBF1) DAP proteins. Analyses of DAP assembly revealed a hierarchy. CEP83 recruits both SCLT1 and CEP89 to centrioles. Subsequent recruitment of FBF1 and CEP164 is independent of CEP89 but mediated by SCLT1. All five DAP components are essential for ciliogenesis; loss of CEP83 specifically blocks centriole-to-membrane docking. Undocked centrioles fail to recruit TTBK2 or release CP110, the two earliest modifications found on centrioles prior to cilia assembly, revealing centriole-to-membrane docking as a temporal and spatial cue promoting cilia initiation.


Asunto(s)
Centriolos/metabolismo , Cilios/fisiología , Membranas Intracelulares/metabolismo , Animales , Línea Celular , Centriolos/genética , Cilios/genética , Cilios/metabolismo , Células HeLa , Humanos , Ratones , Unión Proteica
19.
Dev Cell ; 22(3): 475-6, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22421039

RESUMEN

Polarized cortical cues are known to guide spindle movements to dictate division axis and cleavage site during asymmetric cell division. In a recent issue of Nature Cell Biology, Kiyomitsu and Cheeseman (2012) report two novel spindle-intrinsic signals that regulate spindle orientation and position in symmetrically dividing human cells.

20.
J Cell Biol ; 193(4): 727-39, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21576395

RESUMEN

Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were "infertile," indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/fisiología , Centrosoma/fisiología , Células Epiteliales/fisiología , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Proteínas de Ciclo Celular/genética , Células Cultivadas , Centriolos/ultraestructura , Centrosoma/ultraestructura , Células Epiteliales/ultraestructura , Técnica del Anticuerpo Fluorescente , Células HeLa , Homeostasis , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Microscopía por Video , Proteínas Serina-Treonina Quinasas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/ultraestructura , Factores de Tiempo , Transfección , ARNt Metiltransferasas , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...